The truth about sports, nutrition and pain!

We already know what Vo2 Max is, why it is important to train it and at what intensities we should train to improve it. Now all we need to figure out is how to calculate those percentages to know  if we are training at the right intensities.

Let’s not forget that training intensities between 40-89%Vo2Max can improve the aerobic capacity in normal people. This means that people who are not in such good shape can train at 40 %  of Vo2Max, or even lower, and already see improvements, while people who are in better shape will have to train at higher intensities. Remember that two of the ways to improve VO2Max are by:

High Intensity Interval Training ( 80-100 % Vo2Max)- Only people who are well fit should train at those percentages.

Long Slow Distance Exercise ( 50-65% Vo2Max)- The run should usually last longer than 30 minutes.

Ok, so now the moment we have all been waiting for, how to calculate the intensity of Vo2Max you are working at. So, we do this through a method called the KARVONEN METHOD. It works because it is based on the linear relationship between hear rate and Vo2 with increasing work.

The steps you have to do are the following:

  1. Calculate your Heart Rate Max ( 220 minus your age)-This formula is not exact and the potential error with the standard deviation can be +-11 beats per minute.
  2. Calculate your  resting HR- It is usually better to do it in the morning
  3. Calculate your Heart Rate Reserve (HRR)- This equals Heart Max- Heart Rate Rest.
  4. Target Heart Rate (THR)- This is the heart rate we want to work out.

Remember that there is a linear relationship between heart rate and Vo2 with increasing work. That is why this formula works. So let us say that I want to work at 80% of Heart Rate Reserve the formula would be as follows..

THR= HRrest +0.80 ( Heart Rate Reserve)

I will use myself to put things more clearly. I am 34 years old, my heart rate at rest is 58 and I want to train at 80% of Vo2 Max.

  • Heart Rate Max:220 -34= 186
  • Resting Hear Rate: 58
  • Heart Rate Reserve: 186-58= 128
  •  THR= 58+0.80 (128)  and my Target Heart Rate would be 160.4, meaning that if I wanted to work at 80% percent of my VO2Max my heart rate would have to be at 160 beats per minute

I know it seems a little bit complicated but once you get the trick of it it will be quite easy and your training’s will be much more effective!!

Try it out and let me know if it works. Until next time

I

 

 

In the last blog I talked about what Vo2Max is and why it’s important to train it. In this blog I will talk about how to improve it.

Remember that having a higher VO2 Max is an advantage: it means that your body can take in more oxygen and deliver it to your muscles, enabling you to run faster for a given effort.So any person who runs races should try to improve it. In addition, people with a low VO2Max increase the risk of death from all causes (1) !!There are various ways to improve VO2Max but I will give the two most known and those are:

1.High Intensity Interval training– Here you would do series of at least 50-60 seconds of high intensity.  The work- rest ratio would be = to 1:1, 1:2, or 1:3. The work- rest ratio 1:1 means that if you work, for example, 60 seconds you would also rest 60 seconds. The work rest ratio 1:2 means that you rest twice the time of work, so, if I worked 60 seconds I would rest 120 seconds and so on.  For athletes who are not highly trained, a work- rest ratio of 1:3, or 1:2 may be preferable. As a general rule for young athletes, the heart rate should drop to approximately 120-130 beats (2). The  exercise should be done at 80-100% of VO2Max to improve aerobic power.
2. Long Slow Distance Exercise– Low intensity exercise where you should be working at around 50-65% of  VO2Max. The duration is generally greater in length than the competition you would be doing.

  • It is believed that high intensity intervals are more effective in improving VO2Max than low intensity intervals (3,4). Meaning that even  running intervals of 30 seconds or less at full intensity could improve VO2Max.

Now, you are probably thinking that this is nice but how in the world do I calculate my VO2Max to know what percentage I am working at. This is quite easy…..but I will talk about that in my next blog. See you then.

 

 

 

References

  1. Kodama S, Saito K, Tanaka S, Mai M, Yachi Ym Asumi M, et al. Cardiorespiratory fitness as a quantitative predictor of all cause mortality and cardiovascular events in healthy men and women. Journal of the American Medical Association 301:2024-2035, 2009.
  2. Astrqnd P, and Rodahl K, Text bookd of Work Physiology. New York: McGraw-Hill,1986.
  3. Hicson RC, Bomze HA, and Holloszy JO. Linear increase in aerobic power induced by a strenous program of endurance exercise. J Appl Physiol 42: 372-376, 1977.
  4. Hickson RC, Hagberg JM, Ehsani AA. Time course of the adaptive responses of aerobic power and heart rate to training. Med Sci Sports Exerc 13:17-20

What is Vo2Max?

Some people have probably heard of this, some may have not. For those that haven’t I will give a quick explanation of what it is and why is so important.

Vo2Max,  means the maximal capacity of the body to transport and use oxygen during dynamic exercise using large muscle groups. In other words, Vo2max is the maximum way to produce energy aerobically while you run, bike,swim, etc.Remember from my last blog (click here), that we can produce energy 2 ways: Aerobic and Anaerobic.

  1. The anaerobic system is the fastest way the body has to produce energy, the bad thing about it is that we cannot maintain this system during long periods. This system is used especially during short-intense exercise, like for example, a 100 meter race.
  2. The aerobic system produces energy at a lower pace but it can be maintained  for much longer periods. For example, when we run a marathon most of the energy will come from that system.

Vo2Max is measured in milliliters of oxygen per minute per kilogram of body weight (ml/min/kg) and the highest Vo2max recorded was a Norwegian cross-country skier with 94ml*kg*min!!

Why is it important to have a high Vo2Max?  Because all else being equal, a higher VO2 max is an advantage: it means that your body can take in more oxygen and deliver it to your muscles, enabling you to run faster for a given effort. So let us put an example: Imagine person A has a Vo2Max of 64ml*kg*min and person B has a Vo2Max of 52ml*kg*min and they are going to run a 8km race. The most likely thing that will happen is that person A will win because of the higher Vo2Max.

Now that we understood what Vo2Max is and how important it is in endurance events, I will talk about how we can improve it. But for that you will have to wait until my next blog🙂

 

 

In the last blog I talked about how and why altitude affects endurance exercise but would altitude also affect short explosive exercise where oxygen is not a factor? Well, let us find out.

Most of you have probably heard that when we exercise we can use two systems: Aerobic and Anaerobic. Aerobic means that we need oxygen to produce energy and any event that last more than 60″ seconds is basically going to depend on that system for energy. Anaerobic, on the other hand, means we are able to produce energy without oxygen and any event that last 10″or less seconds is going to use mostly the anaerobic system.

So, would altitude affect anaerobic exercise? We  know now ( thanks to the last blog) that the partial pressure of oxygen is lower at higher altitudes but since we would be doing an activity that does not require oxygen that would not affect us. We also learned that at higher altitudes there is a lower air density. If there is a lower air density it means there is less resistance, meaning your running speed could improve!!

There you have it, since anaerobic exercise does not rely on oxygen and there is less air density, any exercise that does not last too long should not be influenced by altitude. And that is what happened exactly at the Olympic games of Mexico city in 1968. In most of the short duration-explosive events there was a big improvement!

 

Hope you enjoyed it.

 

 

 

I think many people have heard that exercising at altitude is harder than exercising at sea level but most people don’t know exactly why. I will try to explain that in this blog.

First we have to talk about atmospheric pressure and what it is and what it means. In simple words, atmospheric pressure is a measure of the weight of a column of air directly over that spot. At sea level, the weight of that column of air is greatest and it equals more or less to 760mmHG. Most of you will know that air is composed of Nitrogen 79.04%, Oxygen 20.93% and Carbon Dioxide 0.03%. These percentages remain constant regardless of altitude. So, at sea level where atmospheric pressure is 760mmHG, the partial pressure of Nitrogen would be 600.7 (79.04% of 760mmHG), of Oxygen it would be 159.1mmHG (20.93 % of 760mmHG) and 0.2mmHg for Carbon Dioxide (0.03% of 760mmHG). Ok, so as we start to climb the atmospheric pressure is going to decline, the percentages of the gases will remain constant but the partial pressure of each gas will be lower. This is because the air is less dense, and each liter of air contains fewer molecules of gas. Let’s look at some examples to visualize this:

1. Mexico city is at 2,210 meters, the atmospheric pressure there is around 585mmHG meaning that the partial pressure of oxygen would be 122mmHg ( 20.93% of 585mmHG);

2. Mount Everest is at 8,048 meters, the atmospheric pressure there is around 253mmHG, which would mean that the partial pressure of oxygen would only be 53mmHg ( 20.93% of 253mmHG).

So there you have the answer, since the air is less dense the partial pressure will be lower so every time you breath you will inhale less molecules of oxygen. If there is less oxygen you will get tired quicker. But does altitude affect exercises where oxygen is not a factor, like jumping??? I will talk about that in my next blog,,,

The best diet.

I usually do not do this but this time I will make an exception. Instead of wrtting a blog, I am going put a link to a video that talks about nutrition and diet from a scientific point of view. It is only 15 minutes long and it is explained in a simple manner. In my opinion one of the best videos I have seen. Hopefully you guys like it and learn something from it.

https://www.youtube.com/watch?v=fqhYBTg73fw . If the link gets blocked, all you have to do is go to youtube and look for Doctor Mike Evans.

¨Hitting the wall¨

You probably have heard of this expression before if you are a runner and may have even experienced it yourself. ¨Hitting the wall¨ usually happens around the 29th to 35th kilometer. The runner´s pace slows down considerably, the legs become very heavy and thinking often becomes hard and confused (now that I think about it, this last thing happens to me quite often). This happens because we basically run out of available energy.

The runner´s primary sources of energy during prolonged exercise are carbohydrates and fats. We have lots of stores of fat, around 70.000 to 75.000 kcla, even in a lean adult, but the fat metabolism requires a constant supply of oxygen, and delivery of energy is slower than that provided by the carbohydrate metabolism. The carbs reserves (glycogen), on the other hand, are quite limited and have only around 2.000 to 2.400 kcla, which happens to be enough energy to get us to kilometer 29-30. Since the body is much less efficient at converting fat to energy, running pace slows and the runner suffers from fatigue.To make things even worse the brain, which  only accounts for 2% of your weight and consumes 20% of your energy, gets its fuel source only from carbohydrates!!  So now next you ¨hit the wall¨you will know why that is. Hope you liked it. Till next time

References

Kenney L, Wilmore J, Costill D. Physiology of Sport and Exercise sixth edition, Human Kinetics,2015.

Tag Cloud

Follow

Get every new post delivered to your Inbox.

Join 583 other followers